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Outline

m We present a general Bayesian methodology for implementing
binary regression models
m Our methods aims to

m extend the approach described in [Durante(2019)] for the
Probit model with a Gaussian Prior

m provide a competitive alternative to existing methods
[Polya-Gamma technique (Polson at al (2013)];
[Holmes and Held(2006)] )

Ingredients:

o The Unified Skew Normal (SUN) class of densities
¢ Scale mixtures of Gaussian distributions

o Kolmogorov distribution

¢ Gibbs sampler
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Prequel

The Unified Skew-Normal density has been introduced by
[Arellano-Valle and Azzalini(2006)], but see also
[O'Hagan and Leonard(1976)] for a proto-Bayesian use.
Among several representations, it can be considered as a
multivariate Gaussian with linear constraints.

Y = & +diagt?(Q)Z| (U+1 > 0)

o ~meen (o) [ 7))

EcRY T €R™ T is a m-correlation matrix, Q is a d-covariance
matrix, A is d x m matrix and Q = diag_%(Q)Qdiag_%(Q).
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The density function

It includes the computation of two CDFs of a multivariate
Gaussian density

Q 'Qldia -3 _
fy(y):(PQ(y_g)q)rA’QIA(T—FA(;?-(T(; g 2(Q)(y 5)),

T =0 = Skew-Normal family
A =0 or m=0= Normal family
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A different representation

Y =& +diag2(Q)Z| (T < AZ+b), (1)

with A€ RI*™ pc R™,
Thisway, T 1L Z and T ~ Np,(0,0), with

O =diag 2 (T—A'Q7'A) (T-A'QA) diag 2 (T—A'Q1A),

A=diag 2 (T—A'Q1A)A'G?

and )
b=diag 2 (T-A'Q'A) .
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SUN family and Probit model

[Durante(2019)] discovered a central role of the SUN density in
Bayesian probit models.

Starting from a normal prior for the coefficients 8 ~ N,(&,Q) the
posterior for B after producing a probit likelihood, belongs to the
SUN family

ﬁ|y7X ~ SUNP.,H (§*7Q*7A*7T*7 r*)

Remarks:
m The previous stochastic representation can be suitably used
for posterior sampling
m The algorithm is particularly efficient in the p > n case
[Botev(2017)]
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Extending the SUN family

We construct a larger class of densities, named perturbed SUN
(pSUN) via the replacement of ¢ and ® with scale mixtures of
Gaussian densities.
This is done with the goal of finding a more general conjugacy in
the Bayesian analysis of binary regression models.
Assume that Z = diag!/?(W)R and T = diag"/?(V)S, with
V~Qu() 1L S~ Npy(0,0)

W~Qw() LL R~ Ny(0,9Q),
The pSUN class is defined as the expression (1)

Y = & +diag2(Q)Z|(T < AZ+b),
with the above assumptions on Z and T. Then,

pSUNdm(QV797A7b7 QWJQ7§) .
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The density of a pSUN

Let Y ~ pSUNym(Qv,0,A,b,Qw,Q,8). Then

do.0, (Adiag-%(ﬂ)(y &)+ b)

Vo040 a(b)

fr(y) = ea.qu(y —¢)

)

with

&5 o) = /Rd o5 (diag*%(W) u) dQ(W),
and
Vo, 0.40y0(b)=P(T—AZ<b)
T~ ®gq,() LLZ~dg 0 ()
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Some pSUN densities

Logit: top: N(0,1); V ~ LK(:);W=1,A=3,b=0
V~ LK();W =1,A=15b=0
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Probit: bottom: N(0,1); V=W =1,A=3,b=0 9/35



Some pSUN densities

top: Lapl(0,1) ; V ~ LK(-); W ~ Exp(0.5),A=3,b=0;
V ~ LK(-); W ~ Exp(0.5),A=1.5,b=0
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bottom: Lapl(0,1) V =1, W ~ Exp(0.5),A=3,b=0;
V=1,W~ Exp(0.5),A=15,b=0 10/35



The MGF of a pSUN

Assume Mz(u) (MGF of Z) exists. Then, the MGF of Y is

g .1
wQ\/,@,A,Qw,Q (b, dlag2 (Q)U)

Vo,04aya(b)

My (u) = e° M (diag%(Q)u>

?

with
\UQ%@,A,Qw,Q (ba k) - P(T—AZk < b)

T ~dgq, () LL fk, and Z( is the k-tilted distribution
[Siegmund(1976)] of Z ~ ‘DQQW(‘)
that is o

3 _ e sz(X)

7,00 = Mz (k)
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Sampling a pSUN

We adopted a Gibbs algorithm:

m Key aspect: one must be able to sample from the f.c.'s W|Z
and V|T.

mt is_ not always easy, and it depends on the specific values of
©,Q, and the form of Quw(-) and Qv (-).

m Relatively simple in the most popular versions of the Bayesian
binary regression.
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Sampling a pSUN

At time t:

Sample Vi1~ V|IT =T,
Sample W1 ~W|Z = 2,
In order to sample Z; 1, Tey1 ~ Z, T|T < AZ+ b, Wi y1, Vi
do the following steps: set O, = diag!/?(V/)@diag"/?(V) and
Qu = diag/?(W)Qdiag'/?(W)
Set X, = G)\/t+1 —|—AQWH1A/
Sample € ~ TNy, (—,—b,0,%;)
Set Hy = Quw,,, Ax;!
Set Hy = (/ — HMA)QWHJ
Sample Zt+1 ~ Nd(H/JS’ Hz)
Set Tit1=AZt41—¢
—> Vi =& +diag?(Q)Zia
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Linear Symmetric Binary Regression

Consider a general version of the model as

ind .
Yilpi ~ Be(pi), Vi=12,....,n;  pi=Nn(X)),

m A:R —[0,1] is the link function,

m 7(-) is a calibration function,

m X; € RP is the i-th row of the design matrix X.
Typically, A(+) is a scalar CDF, symmetric about 0, and 1n(x) takes
the simple linear form, x’B; Call it a linear symmetric binary
regression model (LSBR).
Set An(x) =TI"1 A(x;) and B, = [2diag(r) — I5] for r € {0,1}".
The likelihood function of a LSBR is

L(B:y)=Nn(ByXB)-
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Conjugacy for Linear Symmetric Binary Regression (LSBR)

Consider a Bayesian LSBR model and assume

B ~ pSUN, m(Qv,,©, A, b, Qu, &,Q).

If the link function is of the form A(x) = J'® (25 ) dQv-(v),

n * Ak b
B|Y*yNPSUNP7m+” (QVOCQV*,e aA a|:Byxé:|aQW7éaQ>»
with
* e Om><n * A OmXP
0" = - AF =
|:On><m In :| ' |:0n><p Bdelag’%(Q) ’

and Qy, QU ([x1,x2]") = Qv (x1) [T Qu+(x2,)
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Computation

m In order to produce a posterior sample with the Gibbs
algorithm, one must be able to sample from the full
conditional distributions of V and W.

m WV: This is relatively simple when () either has an elliptical
structure or it has independent components. For example, the
SGH [Barndorff-Nielsen(1977)] class of priors satisfies the
elliptical constraint and corresponds to m = 0. Instead,

m =1 = new skew version of the GH family.

m V: It depends on the link function A(-). Simpler when © is
diagonal; (independently sample V;|T;i=1,2,...,n+ m. This
happens, for example, when m=0 or m=1.
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Bayesian Logistic Regression

m The popular logistic regression model is a special case of those
discussed in the previous Theorem

m The logistic distribution admits a representation in terms of a
scale mixture of Gaussian distributions; see
[Andrews and Mallows(1974)] and [Stefanski(1991)].

In fact,
Ti|Vo.; ~ N(0,4V§,) and Vo ; ~ K(-) = T; ~ Logis(0,1)

that is
exp(—t)

Trep(-n) <%

fr(t) =
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Kolmogorov's distribution

We will use the logistic Kolmogorov distribution:
Vi=4V3; , Voi~K(")
We denote it by V; ~ LK(-); the density is
3WZ 1((2/—1)27% —v)exp (—W) O<v< v
J:l(_l)J J exp( Ly ) v> v

for some v* > 0 ; see [Onorati and Liseo(2022)] for details. For
numerical reasons, we set v* &~ 1.98 and truncate both series to the
first 15 terms.

k(v)=
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Comments

m [Holmes and Held(2006)] have already used a very similar
representation within a data-augmentation Gibbs algorithm for
several models including logistic regression.

m Our approach and the one in [Holmes and Held(2006)] share
some characteristics in the binary logistic case although we
introduced some improvements in terms of speed.

m We do: V,W|T,Z and then T,Z|V,W
[Holmes and Held(2006)]: V,W|T,Z; then T —AZ|Z,V , W
and then Z|T - AZ,V, W
where, in both cases, B =& +diag1/2(Q)Z.
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Technical details

The hard step is “how to sample” from the f.c. of
V|IT,B,W,Y=V|T
m Notice that the first m components of V|T are independent of
the last n ones, and they only depend on the prior distribution.

m focus on the last n components of V/|T: they are mutually
independent so one only needs to sample from
Vi Ti,i=m+1,m+2,....,m+n.

m we adopt an acceptance-rejection algorithm.
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Simulation Study

Both in the probit and in the logit case:

m Priors: pSUN with weakly informative hyper-parameters in the
spirit of Gelmanetal. (2008) , i.e.

m=0,& = 0,,Q = diagonal matrix

= 7(f) will be unimodal and symmetric about the origin.

Probit model implies V; =V, =.---=V,=1.

We consider 3 different priors
a Gaussian prior (W = W =--- = W, = 1) [Durante(2019)]
B a multivariate Laplace with independent components

(Wi, Wa,... W, ™ Exp (1/2))

Dirichlet-Laplace prior [Bhattacharya et al. (2015], with a
discrete uniform prior on the Dirichlet parameter, in (0,1]
{1/300 % j,j =1,2,...,300}.
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Simulation Study: €2 values (Probit case)

The diagonal components of Q were obtained, adapting a
suggestion in Gelman et al.(2008)

Gaussian: 011 = 100,000 = -+ = Wpp = 42.25
Laplace with indep. components: ;1 = 100; o2 = -+ = Wpp = 6.25.
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Simulation Study: €2 values (Logit case)

Logit model implies Vi, V5,... V, X K(")

Centred Normal: W11 = 256; oy = -+ = Wpp = 25;
Laplace with indep. components: W11 = 210.25; o5 = -+ = Wpp = 14.0625
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Simulation scheme: p =10

forg=12,...,G
e sample each covariate value indep Xl-j-g) ~ N(0,1) and
transform column of X() to have a s.d. =0.5
for all model/prior combination
e if not DL, sample X(&:") ~ W otherwise set £, =/ and a ~ ()
sample B ~ 74(B|Xg,n)
o sample Y& nd Be(An(X[©)BLENY)
e draw N values from the posterior distribution of
e compute the empirical quantiles of level y € {5/100 x j,j = 1,2,.(.g.;7)19}

= evaluate the frequentist coverage comparing the quantiles with B, .

number of iteration in the Gibbs sampler: 10*
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Simulation Study: €2 values (Results)

Logit model Frequentist coverage of priors in repeated sampling:
Gaussian and Indep. Laplace

Empirical Coverage
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Simulation Study: €2 values (Results)

Probit model Frequentist coverage of priors in repeated sampling:
Dirichlet-Laplace and Indep. Laplace

Empirical Coverage
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Cancer SAGE

Discussed in [Durante(2019)]: a p > n case:

n =74 normal and cancerous biological tissues at 516 different
tags.

Of interest: to quantify the effects of gene expressions on the
probability of a cancerous tissue and predicting the status of new
tissues as a function of the gene expression.

Gene expressions standardized with mean 0 and ¢ = 0.5.

When p > n the prior input is decisive
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Cancer SAGE
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Probit model: Posterior means of the 516 3 coefficients + intercept.
Left: Durante’s prior; Gaussian prior Right: Laplace with independent

components (black), and
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Cancer SAGE
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Logit model: Posterior means of the 516 f3 coefficients + intercept.
Gaussian prior; Laplace with independent components Dirichlet-Laplace .
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Objective Bayes

The general expression of a pSUN prior for the 3 vector is
/8 ~ pSUNm,p (QV7 @7 A7 b7 QWy‘S)Q)

The natural objective version is then obtained by setting

mQ\/ @ A b é
0O NA|NA|NA|NA|O

m Quw and Q are the only quantities to specify.

m For example, the adaptation of a sort of g-prior for binary
responses (Marin & Robert, 2006) would correspond to
Q=(X'X) " and Wy =Wo=-..= W, =w and
m(w) o w3/4,

m A weakly informative prior can be obtained by mimicking the
approach described for the logit model in Gelman et al. (2008)
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Comparison with Polson et al. (2013)

ACF

with a small dataset (n =100, p = 4):

Polya-Gamma alg. takes 13 seconds with a C ++ code. our
algorithm is much slower [euphemism ...] (5 minutes with a
R code). However our ACF are much better

PG Comp 1 PG Comp 2 PG Comp 3 PG Comp 4

Lag Lag Lag Lag
pSUN Comp 1 pSUN Comp 2 pSUN Comp 3 pSUN Comp 4
w w @ o |
B B E E
1 . 1 . b w b
= 2 =4 2 = g =
= = E E
5 ‘ 5 L o flo.. S feloes
e FrorororoT e oo e T T T T e T T T T
¢ 2 4 & 8 10 0 2 4 & & 10 0 2 4 6 & 10 ¢ 2 4 & & 10
Lag Lag Lag Lag
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Comparison with Polson et al. (2013)

m with Cancer SAGE dataset (n=74,p =517):
Polya-Gamma alg. is four time slower than pSUN (103
minutes vs 25 minutes), and ACF are still better

PG Intercept PG Comp 1 PG Comp 2

PG Comp 3 PG Comp 4
: ‘ ‘ | | | |
- “M‘\\I\\ ULl gy Ll N 1Ly
B 2 45 3w s o2 45 8 ow C 2 46 8 o I w o 2 W
g 4 i i g
PSUN Intercept PSUN Comp 1 PSUN Comp 2 PSUN Comp 3 PSUN Comp &
§ § H § g
\\\\\\\\\\\\ : e
v 2 © o 2 o ¢ 2 oa © o 2 w o 2 o4 w
- s i - -
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Future development

m Botev & L'Ecuyer (2015) have proposed an efficient method
for simulating from a multivariate truncated Student ¢t
distribution. It works fine up to 100 dimensions

m This approach can be useful in our context for evaluating the
normalizing constant of the posterior distribution. This can be
suitably used for two different goals

m providing an exact i.i.d. sampler
m model selection via Bayes factor

m Make the algorithm faster in C++
m Semiparametric generalisations (see Paolo’s poster)

m Tobit models
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